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I. INTRODUCTION

Absorbing configurations are microscopic states in which a system can be
trapped, and from which it can never escape. Often the phase diagram of
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Critical properties of systems exhibiting phase transitions into phases with inf in i te
numbers of absorbing states are studied. We analyze a non-Markovian Langevin
equation recently proposed to describe the critical behavior of such systems, and
also introduce and study a non-Markovian discrete model, which is argued to
present the same critical features. On the basis of mean-field analysis, Monte
Carlo simulations, and theoretical arguments, we conclude that the phenomenol-
ogy of the non-Markovian models closely parallels that of systems with many
absorbing states in one and two dimensions. The "bulk" or "static" critical
properties of these systems fall in the directed percolation ( D P ) universality class.
By contrast, the critical properties associated with the spread of an initially
localized seed exhibit a more complex behavior: Depending on parameter values
they can, both in one and two dimensions, fall either in the dynamical percolation
or DP universality class, or else exhibit apparently nonuniversal exponents. In
contrast to previous results, however, the nonuniversal exponents in 2D are found
to satisfy a scaling law which implies that a particular linear combination of them
is universal and assumes DP values. These results demonstrate the efficacy of the
non-Markovian approach for understanding systems with many absorbing states,
which are difficult to analyze in their original microscopic formulation.



a system exhibiting absorbing states contains a nonequilibrium critical
point (or surface of critical points) separating an absorbing phase, where
the only steady states are absorbing states, from an active phase in which
a non-trivial steady-state dynamics occurs.

Phase transitions into absorbing states occur in many different models
in physics, chemistry, biology, and economics, and so have received much
attention in the last years. Among others, the family of systems with absor-
bing states includes the following models and systems: directed percolation
(DP),(1-3) surface reaction models,(4, 5) branching and annihilating random
walks,(6) the contact process,(7, 2, 3) models of catalytic reactions,(8, 9)
systems with multiplicative noise,(10-13) damage spreading transitions,(14)

models of epidemics and of forest fires,(15-17) models of transport in porous
media and growing surfaces pinned by impurities,(18, 19) and even models of
self-organized criticality.(20)

Usually, in studies of systems with absorbing states, two different types
of analysis are performed:

• Studies in which the initial condition is homogeneously random are
typically used to determine standard bulk quantities of interest such as
the averaged order parameter, M, the correlation length, E, or correlation
time T, as a function of the distance, A, to the critical point. The critical
exponents B, vx and v, defined by
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respectively, are determined in this manner. The approach of different
quantities towards the steady state, for example, M(t)~t-0 at criticality,
can also be analyzed in this way.

• Studies of the spreading of a localized initial seed in an otherwise
absorbing configuration(21) yield further insight into the physics of absorbing
states. A spreading critical point separates an active region, in which the
initial seed spreads indefinitely, from an absorbing region, in which it dies
out with unit probability as t -> co.5 The quantities usually computed in
this type of study are: the total number of active sites, N(t), averaged over
all runs (including those which have reached the absorbing state); the
mean-square distance, R 2 ( t ) , of active sites from the original seed in sur-
viving trials; and the survival probability, P(t), i.e., the probability that the

5 We shall see that the critical point for spreading often, but not always, coincides with the
bulk critical point.



which respectively define the exponents n, z, and S.

From now on we refer to the quantities or critical exponents
calculated with these two approaches as bulk and spreading properties
respectively. In DP and related models, the bulk and spreading critical
points coincide, and the two sets of exponents are connected through
scaling relations such as B = 6v t .

An ambitious task in this area is that of assigning all the different
phase transitions into absorbing states to appropriate universality classes.
The main breakthrough in this direction is due to Janssen(22) and
Grassberger,(23) who conjectured some time ago that all models exhibiting
a continuous transition into a unique absorbing state with no extra sym-
metry or conservation law belong in the same universality class, namely
that of DP. (This universality class is described by Reggeon field theory
(RFT), a model first introduced in the realm of particle physics(24, 2 5 ) . This
conjecture is supported by a large number of both numerical and analytical
studies.(26, 27)

Other universality classes, different from DP, have been identified sub-
sequently. They describe phase transitions with essential physical differen-
ces with respect to DP. Some of them are:

• Certain models of epidemics and forest fires,(15, 16) have been found
to be represented by a history-dependent field theory, in which the
dynamics at the critical point generates percolation clusters. This is the so-
called dynamical percolation universality class, and is a time-dependent
generalization of standard percolation.(15)

• In particle systems in which evolution occurs only at the interfaces
separating occupied from empty (absorbing) regions, compact clusters are
generated, rather than the fractal clusters generated by more generic rules,
such as DP, that allow evolution within the bulk occupied regions. These
models belong to the compact directed percolation (CDP) or voter model

6 Note that N(t) is computed by averaging over all the runs, while R 2 ( t ) is calculated by
averaging only over the runs that have not reached an absorbing state at time t. The average
number of active sites in the surviving runs, N s ( t ) , satisfies N(t) = N s ( t ) P ( t ) , and therefore
scales asymptotically like tn + o.
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system has not reached the absorbing state at a given time t.6 At the critical
point these quantities scale for large / like:



universality class.(28) A field theory for such systems can be found in refs. 29
and 30.

• There are systems with absorbing states in which the total number
of particles is conserved (locally) modulo two, i.e., the parity of the particle
number is conserved. It is well established by now that this extra conserva-
tion law puts such models in a new universality class, different from DP.(31, 6)

A field theory describing this class has recently been proposed.(6, 32)

• A new universality class characterized by noise different from that of
the previously described classes has recently been elucidated. It is called the
multiplicative noise (MN) universality class, and describes absorbing-state
systems wherein the dominant source of noise is external. (See refs. 11, 12,
10, and 13 and references therein for more details.)

In this paper, we study a related but somewhat more complex
problem, namely, the critical behavior of systems with an infinite number of
absorbing states (INAS, hereafter). Such systems arise in many of the same
contexts (notably catalysis,(33, 4, 5, 34) and epidemiology(15, 16)), that give rise
to models with unique absorbing states. In the typical situation of interest,
the number of distinct absorbing configurations grows exponentially with
system size. We focus here on the pair contact process (PCP),(35, 36) a
prototypical simple model of this type, which has been studied quite exten-
sively through simulations, and found to exhibit complex critical behavior
that is only partially understood. We will not consider models such as the
threshold transfer process (TTP),(37, 36) which also have INAS, but whose
behavior is somewhat simpler(36)).

The PCP is a particle system or cellular automaton, similar in spirit
to the well known contact process (CP),(38) but with the evolution con-
trolled by nearest neighbor (NN) pairs of particles. The model is described
as follows: Particles are distributed on a regular d-dimensional lattice, each
site being either singly occupied or empty. An isolated particle, that is, one
with no occupied nearest neighbor, cannot change its state. On the other
hand, a NN particle pair can either annihilate, producing two new empty
sites (with probability p), or, with probability 1 —p, generate a new particle
on a randomly chosen, empty, neighboring site, if there is one. The details
of the implementation of this basic idea in a specific algorithm do not
affect the qualitative features or critical behavior of the model. It is clear
that any configuration of isolated particles is absorbing under these general
rules. The number of such configurations obviously grows exponentially
with system size. The PCP has been shown numerically to undergo a con-
tinuous transition from an active to an absorbing phase(35) as p increases.
The phenomenology of this transition is quite complex: While bulk critical
properties seem to belong in the DP universality class, the spreading
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properties show evidence of nonuniversal behavior. In the next section we
summarize these numerical results, and the fairly complete understanding
of the bulk properties that has recently been developed. In Section III we
study the spreading problem in mean-field theory. In Section IV we intro-
duce and study numerically a new microscopic model, argued to belong in
the same universality class as systems with INAS. Comparing the results for
this model with those of Section III, we propose an explanation for some of
the nonuniversality in spreading properties observed in two-dimensional
(2D) models with INAS. We also observe that the nonuniversal exponents
of our new model in 2D satisfy a scaling law postulated earlier, that has
been previously observed to hold in 1D but not in 2D. In consequence,
a particular linear combination of the nonuniversal exponents assumes a
universal, DP value. Section V summarizes our results and conclusions.

II. SYSTEMS WITH AN INFINITE NUMBER OF ABSORBING
STATES: SUMMARY OF PREVIOUS RESULTS

A. Numerical Results

1. One Dimension (d = 1). After some initial controversy, it now
seems clear from Monte Carlo simulations that all bulk critical expo-
nents measured thus far in models with infinite numbers of absorbing
states(35, 4, 5, 34) assume DP values. Critical spreading, however, presents a
more complex and puzzling picture. At the critical point for spreading
(which coincides with the bulk critical point), the statistics of surviving
trials (i.e., runs that have not reached an absorbing configuration at a given
time), coincide with those of the surviving trials in DP, implying that both
z and the combination n + S are universal, with DP values, in d = 1. ( 3 5 )

Surprisingly, however, the exponents associated with quantities averaged
over all the runs, such as n and S individually, are found to be non-universal,
varying with the type of absorbing state invaded by the initial seed, i.e., on
the initial condition. (For the 1D PCP model, e.g., 6 has been found to
assume values between roughly 0.09 and 0.25, while n varies between 0.38
to 0.21 as the initial conditions are modified.(35) For DP, recall, 0.16,
and n = 0.31.) Only for the so-called "natural-initial-state" initial condition
are DP exponents recovered. As detailed in ref. 35, the natural initial state
consists of absorbing configurations generated by the model itself, at the
critical point, starting from a homogeneous configuration.

For any type of initial condition, a generalized hyperscaling relation
postulated for these systems,(37, 35, 39) namely,
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is observed to hold. Here 0 is a new universal exponent, defined through
the asymptotic time dependence of the mean density of particles in the
occupied region, n ( t ) ~ t - 0 , resulting from an initial seed, averaged only
over surviving trials at criticality. In DP it can be shown(21, 39) that 0 = d
and therefore the scaling relation reads 4S + 2n = dz. Note that 0 = 9
always.

So far there is no satisfactory theoretical understanding of all these
facts, in particular of the non-universality.

2. Two Dimensions (d = 2). As in d=1, all the bulk critical
exponents are found to assume DP values (see ref. 40 and references
therein). The situation regarding spreading exponents seems, however, even
more complicated than in d= 1;(40) all of them seem to be non-universal:
6 can change by more than one order of magnitude with changing initial
conditions, and neither z nor n + 6 is constant, as they were in d = 1.
Furthermore, the scaling relation derived for systems with INAS,
Eq. (7),(37, 39, 40) seems to be violated. The critical point for the spreading of
a seed is found to depend on the initial condition, and does not coincide,
in general, with the critical point for bulk properties. This shift in the criti-
cal point is believed to be the origin of the violation of the scaling law. No
satisfactory explanation of this complex situation has yet been proposed.
(See, however, the Note Added in Proof at the end of this paper.)

B. Analytical Results

The first analytical steps in understanding the puzzling physics
described above were presented in a recent paper.(36) The approach consists
in describing the prototypical PCP model with two mesoscopic, coarse-
grained fields, n1(x, t) and n2(x, t), which represent the density of isolated
particles and NN pairs respectively. These fields evolve according to the
following set of coupled Langevin equations:

where the ct, r,, ut, and w, are all constants, assumed to have the
appropriate signs required to keep the fields n1 and n2 bounded from
above, and n1 and n2 are Gaussian white noise variables, whose only non-
vanishing correlations are



for i, j = 1, 2, where the Dij are noise strengths. Other higher order terms
could be introduced in (8), but they can be shown to be irrelevant in the
renormalization group (RG) sense.(36)

As discussed in ref. 36, this set of equations can be simplified by drop-
ping the C1 u1, and noise terms in the nl equation, and then solving that
equation for n1 in terms of n2. Since the dropped terms are generated by
RG iteration of the simplified equations, their omission should not change
the critical properties of the system. Substituting in the n2 equation, one
obtains
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where n1(x, 0) is the initial condition of the n1 field.
The "natural density"(35) n1 then corresponds to the uniform density,

n1(t = 0), for which the coefficient of the exponential term vanishes, i.e.,
n1(t = 0) = r1/w1.7 The equation then reduces to precisely the Langevin
representation of DP. This constitutes a simple explanation of the
occurrence of DP exponent values in the numerics for this special value of
the initial condition.

Let us now simplify the problem by considering only uniform initial
conditions, n 1 (x , 0) = n1.

8 For notational economy, we also drop the sub-
scripts "2," and set r = (r2 — w 2 r 1 / w 1 ) , c2 = 1, and a. = w 2 ( r 1 / W 1 — n 1 ) in
Eq. (10), to obtain

which is the non-Markovian Langevin equation proposed to describe
systems with INAS.

This equation is analyzed in refs. 36 and 42, with the RG. The conclu-
sion is that for homogeneous initial conditions, the exponential term is
always irrelevant, and DP-like behavior obtains, in agreement with the
numerical results for d= 1 and d = 2. However, no prediction is made in
ref. 36 for the critical spreading exponents, and in particular, no explana-
tion for the observed non-universality has been proposed so far.

7 This is strictly true only in mean field approximation. When the noise is considered the coef-
ficients have to be renormalized.

8 Straightforward application of the replica method indicates that the randomness should not
do more than renormalize the coefficient of the n2 term in Eq. (10). See, e.g., ref. 41.



III. MEAN FIELD ANALYSIS

As a first attempt to shed light on the non-universal critical spreading
problem in systems with INAS, we present in this section an analysis of the
Langevin Eq. (11), using a mean-field approximation wherein spatial fluc-
tuations and the noise term are disregarded. First we discuss the case of
homogeneous initial conditions, and afterwards the spreading of a seed.
In both cases the effect of the non-Markovian term is analyzed, and the
results compared with those of the a = 0 case, which corresponds to the
noiseless DP problem.

where n(x, t) =n(t) is taken to be independent off . We assume that at the
critical point the density n(t) decays in time as a power law, n ( t ) ~ t - 0 ,
where 6 is an exponent to be determined. In the simple case a = 0, the criti-
cal point is located at r = 0, whereupon Eq. (12) yields 0=1.

For the more complex case, a ¥ = 0, let us first suppose that the expo-
nent 0 is smaller than 1. Then the term proportional to a would go to zero
exponentially rapidly as t goes to oo, meaning that the non-linear term,
— un2, would dominate the right-hand side of Eq. (12). But this term scales
like t~2e, implying 0= 1, in contradiction of our supposition. Next, suppose
that 6 > 1, so that t0 ds n(s) approaches a constant as t goes to infinity. Writ-
ing exp[ —w1 \ t 0n(s) ds] =exp[ — w1 $™ n(s) ds~\ xexp [w1, J,00 n(s) ds~], and
noting that Jt,°° n(s) ds ~ t1-0 is small for large t, we can expand the exponen-
tial term exp(w1 \f n(s) ds) in powers of its argument. It follows straight-
forwardly that the critical point is located at rc = —a exp[ — w1 J" n(s) ds],
and the dominant nonlinear term on the right hand side of (12) at the criti-
cal point is tx.w1n \'j° n(s) ds. If < x > 0 this term is positive, and n grows
continuously in time, contradicting our supposition. The only remaining
possibility for a>0 is therefore 0=1. Inserting n(t)~Ct-1 in (12) and
performing the time integral, one sees that the exponential term behaves
like t~Cw1. If CH > 1, the quadratic nonlinearity dominates, giving C= 1/u.
On the other hand, if Cw1 < 1, then the term proportional to a dominates,
implying Cw1 = 1, which is a contradiction. One concludes that for u > w1,
C=1/w 1 . In summary, then, for x > 0, the critical point occurs at r = 0,
where(42) n(t)~C/t, with C = max(l/w, l/wj.
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A. The Homogeneous Case

In the absence of noise and spatial dependence, Eq. (11) becomes



Next consider the case a < 0. Here the term obtained by expanding
exp(w1, I,

00 n(s) ds) in power series is negative, and no contradiction with
the supposition 9 > 1 is found. Equating the right and left hand sides of
(12) produces the result $ = 2.(42) It is important to note that in this case
the-critical value of rc, given by rc= —a exp[ — w, Jf n(s) ds~\, depends not
just on the parameters <x, u, and w1, but on the initial value, n(t = 0), of n.
Note too that in the active phase, i.e., when r>rc, the exponential term
always vanishes exponentially fast with t, and the stationarity condition
implies rn — un2 = 0, or n = r/u, in steady state. Since rc > 0 when a < 0, the
mean-field phase transition in this case has some first-order character, in
that there is a discontinuous jump in the value of <n> right at the critical
point. Thus the critical point combines the characteristics of conventional
first- and second-order transitions in this case.

Summing up, for a > 0, 6 = 1 and the critical point is located at r = 0,
while for a < 0, 6 = 2, and the transition occurs at a value of r > 0 that
depends on the initial conditions, and has both continuous and discon-
tinuous characteristics. We have checked all of these results numerically, by
direct integration of Eq. (12).

B. Localized Initial Seed

We now study the spreading of a localized initial seed in the mean-
field approximation defined by neglecting the noise in Eq. (12). Obviously
in this case the spatial dependence of n(x, t) has to be taken into account
to make the approximation meaningful. The equation to be analyzed is:
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with a localized initial condition such that n(x, 0) = 0 in a small
neighborhood of x = 0, and n(x, 0) = 0 elsewhere. We now determine the
spreading exponents S, z, and n in this approximation.

Note that the probability of reaching the absorbing state, n(x, t) = 0,
is strictly zero in (13), which is a completely deterministic equation. This
implies that 6 = 0 in the mean-field approximation.

Naive power counting in (13) shows that / ~ x2, and consequently that
z = 1. As fluctuations are not considered in mean field, that is the final
result in this approximation.

The other exponent, n, is less trivial to derive, and can change depending
on the parameter values, as we now show.

1. a = 0. We start by considering the case a = 0.



Behavior at Criticality. A localized initial seed tends to spread out
and invade new regions of space, due to the diffusion term in (13). Far
behind the propagating front, the Laplacian term is negligible, and the
local density at every point evolves asymptotically as if from a homoge-
neous initial condition: n converges exponentially fast to the saturation
value, r/u, if r > 0, or decays to 0 exponentially if r < 0. At r = 0, marginal
spreading occurs, and the density in the invaded region well behind the
advancing front decays to zero like 1 / t . We conclude that the critical point
for spreading is located at r = 0, coinciding with the "bulk" critical point
(see Fig. la). Writing the scaling Ansatz n(x, t ) ~ f ( x 2 / t ) / t , where the
scaling function f(y) -> constant as y - 0 , and is exponentially small for
large y, one concludes that the total number of active sites, N(t) = ddx
n(x, t), behaves like td/2-1 asymptotically. That is, n = — 1/2 in d= 1, n = 0
in d = 2, and n= 1/2 in d=3. We have verified the 1D result numerically.
Observe, however, that for dimensions larger than d = 2 this scaling result
cannot be correct: Right at the critical point, the space integral of the equa-
tion of motion gives N(t) = ddx n = — u \ ddx n2. Therefore N(t) decreases
in time, a result in obvious contradiction with n being positive for d>2.

The point is that for d>2, the nonlinear term un2 is an "irrelevant"
variable. To understand this, consider the diffusion equation that results
from setting u = 0. The solution of this equation takes the scaling form
n(x, t ) ~ f ( x 2 / t ) / t d / 2 , where/is a scaling function, the power d/2 being fixed
by the requirement that \ ddx n(x, t) be constant in time. Restoring the
nonlinear term and substituting this scaling form into the equation, one
sees at once that for d>2 the n2 term decays like t~d at large t, i.e., more
rapidly than do the derivative terms, which fall off like t~(d/2 + 1) Thus for
d>2 the scaling form for the diffusion equation constitutes a consistent
asymptotic solution of the full equation. For d<2, by contrast, the n2 term
is "relevant," i.e., dominates at large t, demonstrating the inadequacy of the
naive scaling form above. In this case, our earlier scaling form, f(x2/t)/t,
based on the assumption that the nonlinearity dominates the decay, is
appropriate. For d=2, the nonlinearity is "marginal," and the two scaling
forms coincide, both giving n = 0.

For d>2, one can compute the next leading correction to «, by writing
n~At~d/2 + Bt -01 for constants A and B. Matching the large-/ depen-
dences of the left and right sides of the equation to leading and next-to-
leading orders yields Ol = d — \ . Integrating over x then gives N(t)~A +
Q(-d/2+i+ ^ for some constants % an(j § \ye conclude that for d>2
the exponent r\ sticks at its d=2 value, viz., n = 0.9

9 This is consistent with the fact that n, the anomalous dimension, has to be zero at the critical
dimension of RFT, d = 4.(25, 39)
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Supercritical Behavior. Above the critical point, r > 0, an initial seed
spreads out rapidly due to the presence of the non-vanishing linear term in
the equation of motion, and the density converges to the saturation value
r/u. Since at every time step new regions are invaded, and the density in
those regions grows towards the saturation value, the integral of n over all
space grows linearly in time. In Fig. 1b we show the result of the numerical
integration of the equation of motion in 1D: A kink propagates to the
right, leaving behind a constant density. The name Fisher waves has been
used in the literature to describe such kinks.

Subcritical Behavior. Below the critical point the initial seed dies
out exponentially, and does not propagate beyond a small region around
the origin. In Fig. Ic the decay observed numerically in such a case is
shown.

Hg. 1. Propagation of a seed in the case <x = 0, at (a) the critical point, r = 0; (b) above the
critical point (r= 1); and (c) below the critical point (r= -0.5). Note that the scale in (c) is
semi-logarithmic. The different curves correspond to ( = 200. 400, 600, 800 and 1000; u = 5
and w1 | = 5 in all cases. Note that only .v>0 is represented.
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2. a>0. As in the a = 0 case, the Laplacian makes the initial seed
or "bump" spread out. In this case, however, the sum rn + an exp( — w, x
Jo n(s) ds) produces an effective linear term whose coefficient decreases
monotonically with t as \'0 n(s) ds grows, and hence is smaller in the central
region behind the outwardly propagating front than at and ahead of the
front. Thus, at and below criticality, the density decreases in the central
region at a faster rate than at the borders. In other words, as the bump
moves outward, its center decays rapidly, producing an expanding shell or
wave of relatively high density, and leaving a relatively low-density central
core in its wake.

Critical Behavior. In Fig. 2a we show the result of numerical integra-
tion in 1D at criticality, starting from seed initial conditions. The original
bump splits into two pieces (only the rightmost represented in the figure),

Fig. 2. Propagation of a seed in the case of a= 1, at (a) the critical point, r= — a= — 1;
(b1) above the critical point with r= -0.5; (b2) above the critical point, with r = 0.5; and
(c) below the critical point. Note that the scale in (c) is semi-logarithmic. The different curves
correspond to t = 200, 400, 600, 800 and 1000; « = 5 and w1 = 5, and the abscissa label is .v
in all cases. Note that only x > 0 is represented.

Munoz et al.552



which propagate to the right and left, the total area decreasing in time,
in a manner that can be understood as follows: As the bumps propagate
outward, their maximum height decreases, as shown in Fig. 2a. Con-
comitantly, the integral |" n(x, s) ds decreases with increasing distance x
from the origin. It follows that for large enough .v the exponential in the
nonlocal term, ocexp[ — w1 \'0n(x, s) ds~\ can be expanded in powers of its
argument, i.e., as xa — wla.^'0n(x,s)ds. The spreading critical point is
located where the coefficient of the effective linear term vanishes, i.e., at
rc= —a. This means that behind the bump, the effective coefficient, rc +
ae->"i Jo0"!-5)* of the linear term is negative, implying that the asymptotic
decay of the density is exponential in time. Thus virtually all of the density
is contained in the bump, which spreads diffusively in time, acquiring a
width L of order t1/2, and hence a total area of td/2, at time /.

At criticality, we can integrate Eq. (13) over space, keeping only the
dominant term on the right hand side, to obtain d,N(t)x — \dxn(x, t) .
\dsn(x,s). Since N ( t ) ~ f , the value of n(x, t) averaged over the lattice
(i.e., over the area, L~td/2, of the bump), scales like t n - d / 2 . This implies
that n — 1 = 2(n — d/2) + 1 + d/2, and consequently n= — 3/2 in d= 1. This
result is reproduced in the numerical calculation: the area under the curves
in Fig. 2a decays for large times like t - 3 / 2 .

Shifting into a reference frame that moves with the maximum of the
bump, we can then write the scaling Ansatz n(y, t) ~ t - 0 F ( y 2 / t ) , where the
scaling function F(v) approaches a constant as t;->0, while F decays
exponentially fast for large v. Here y measures distances from the bump
maximum. Integrating over y in d dimensions then yields 0 = d/2 — r\, or
0 = 2 in 1D.

Supercritical Behavior. Depending on the value of r, the system
exhibits two different types of behavior:

(i) 0>r>rc= —a. In this case the coefficient of the effective linear
term, reff(x, t) =r + oc exp( — w1 \'0n(x, s) ds), is positive for points A: just
ahead of the outwardly moving bump or wave, where n is very small, and
is negative behind the bump, where $'0n(x, s) ds is larger. As the wave
approaches a given point x, n(x, t) therefore begins to grow rapidly, con-
tinuing to do so until |0 n(x, s) ds has increased roughly to the point where
reff(x, t) changes sign, i.e., to the point where the wave's maximum passes
through x. For subsequent times, reff(x, t) is negative, whereupon n(x, t)
decays exponentially to zero. Thus the width of the bump does not spread
diffusively, as it does at criticality. Rather, the bump achieves a constant
width as it propagates outward. Its maximum height can also be argued to
achieve a constant value: If the peak height increased with time, then
\ '0n(x ,s )ds would grow more quickly, limiting further growth of n; while
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if the peak height decreased, then \'0 n(x, s) ds would grow more slowly,
thereby keeping reff positive longer, and producing further growth in n.
Thus we are led to a picture of a well-defined wave, unchanging in shape,
propagating forever outward. Our numerical solutions of the 1D equation
for this case confirm this expectation (Fig. 2(bl ) ) . Since virtually all the
weight of the n(x) vs x curve in this figure lies under the bump, we con-
clude that N(t) achieves a constant value for large /: N(t) -> N(r, a).

The mass of the bump increases with r for fixed a as N(r) ~ (r — rc)3/2,
and the maximum height of the bump, m(r), obeys m(r) ~(r — rc)2. These
results can be easily derived from scaling: Since N( t) ~ tn at criticality,
N(t, r)~ tnG((r — rc) t) follows from simple power counting. But N(t)->
constant for r>rc and large t, so the scaling function G(y) must behave
like y-n for large y, whereupon N(r)~ (r — r c ) - n , i.e., N(r) ~(r — rc)3/2in 1D.
Writing N(r) = m(r) w(r), where w(r) is the bump width, and noting that w(r)
scales as length, i.e., as w(r) ~(r — r c ) ~ 1 / 2 we have m(r) ~(r — r c ) 3 / 2 + 1 / 2 =
(r — rc)2 in 1D. We have verified all these ID results numerically.

(ii) r>0. The effective coefficient of the linear term in invaded
regions is positive, so n(x, t) grows until it is saturated by the nonlinear
term un2. In this way, the initial seed propagates outward, leaving behind
a homogeneously occupied cluster with density n = r/u (Fig. 2(b2)).

Subcritical Behavior. In this case the initial bump dies out exponen-
tially. Fig. 2(c) shows that in 1D the maximum of the bump moves a little
bit away from zero, bifurcating into two bumps which disappear rapidly.

Phase Diagram for a > 0. At the mean-field level, the critical point
for spreading, rc = — <x, is located at a value of r smaller than the critical
value, r = 0, separating the active and absorbing phases in the bulk. Conse-
quently, the phase diagram is as shown in Fig. 3. In the region 0>r> —a,
which lies inside the bulk absorbing phase, an initially localized seed
propagates outward indefinitely (marginally at r= —a). This behavior is
markedly different from that of DP, where infinite spreading in the absorbing
phase is not possible.

It is interesting to observe that all the bulk, mean-field critical properties
at r = 0 can be derived from
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with r = 0, i.e., from the noiseless version of RFT. On the other hand, the
mean-field spreading critical properties at r = — a can be derived from
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with r= -a, i.e., from the noiseless version of the equation for dynamical
percolation.(71) (Note that the dynamical percolation model does not have
a bulk active phase. The critical point is defined as the value of r separating
the region in which an initial perturbation propagates indefinitely, from
that in which it disappears.) Of course in order to reproduce the complete,
mean-field phase structure (see Fig. 3), one must treat the complete
Eq. (13), including the exponential term.

3. a <0. For a<0 there are again two competing effects in (13): As
explained above, the Laplacian term produces the spreading of a localized
seed. The term reff=r + aLe~H'>^"ls}''x generates a slower decay near the
origin than elsewhere. That is, the decay is fastest at the border of the
initial bump, where the integral in the exponential term, and hence rc//, are
smallest, thereby inhibiting spreading. This last effect is the opposite of the
one observed for <x>0, and limits the ability of the Laplacian term to
produce the invasion of new regions. Moreover, the initial localized dis-
tribution is not expected to split in this case.

Critical Behavior. At any point x, the effective coefficient of the
linear term is asymptotically given by: r + aexp[-u>, Jo ds n ( x , s ) ] . Since
a < 0, the spreading critical point is expected to occur at a value r = rc

satisfying r(. + ae~"''^"(-? = a-v) 'A ' = 0, so that |a|>r,.>0. (Note that, as in
the bulk, the precise value of rt. depends not just on the parameters a, u,
and vv ' i , but on the initial condition n(x, t = 0).) It follows that the coef-
ficient of the effective linear term at criticality in (13) is negative at the

Fig. 3. Phase diagram for a = 1: r spreading = — a; rMk = 0.



leading edge of the bump, where the exponential term can be well
approximated by a. As indicated above, no spreading therefore occurs in
this case, only a small transient in which the bump spreads slightly, owing
to the large Laplacian term for the type of initial conditions we use in the
numerical solution. Fig. 4a shows the evolution of an initial condition at
criticality. Observe that, as predicted, there is essentially no spreading.
Therefore the evolution consists basically of a decay of the initial bump to
0, with an exponent that coincides with that of the bulk case: n(t) ~ t -2.
(As in the bulk case, this exponent emerges easily from the expansion of
the exponential term in powers of J,00 n(x, s) ds.) The area under the curves
in Fig. 4a is verified to decay like t-2 for large times, consistent with the
absence of spreading.

Supercritical Behavior. For r>rc, the effective coefficient of the
linear term at the origin is positive, so n grows, the initial bump spreading
over all space and increasing in height until at saturates at the constant

Fig. 4. Propagation of a seed in the case <x= — 1, at: (a) the critical point, r = 0.165390(2);
(b) above the critical point (r = 0.5); and (c) below the critical point (r= —0.5). Note that the
scale in (c) is semi-logarithmic. The different curves correspond to t = 200, 400, 600, 800 and
1000; u = 5 and w1 = 5 in all cases. Note that only x>0 is represented.
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value r/u (see Fig. 4b). The exponential of course becomes zero asymptoti-
cally. Note that since rt. >0, and since the stationary density at r = rc is
zero, the density jumps discontinuously from 0 to r c /u at r = rc, giving the
transition some first-order character, as in the bulk.

Subcritical Behavior, The coefficient of the effective linear term is nega-
tive, so an initial bump dies out exponentially, without spreading (see Fig. 4c).

Phase Diagram. As in the a>0 case, the bulk critical point sepa-
rating the active and absorbing phases does not in general coincide with
the one defining critical spreading of an initially localized seed. Indeed, we
have seen that for a < 0 both critical points depend on the initial condition.
Typically, however, the phase diagram looks qualitatively like the one in
Fig. 5. The spreading phase transition has some first-order character, as
explained above. The phenomenology of the model in this case reproduces
the two main features of systems in the voter model universality class: in
invaded regions the density field (averaged over surviving trials) reaches a
constant steady value asymptotically, and the transition separating the
phase in which spreading is possible from the one in which it is not has
some first-order character. We have thus far not succeeded in deriving the
voter model critical exponents from (11) with a < 0 using renormalization
group arguments.

C. Higher Dimensions

Even though our numerical results are restricted to the 1D case, all the
arguments presented above are essentially independent of dimension, so the

Fig. 5. Phase diagram for a = - 1 < 0; rspreading = 0.16539.



structure of the mean-field phase diagrams should remain valid in arbitrary
dimension d. It is interesting to note that, at the mean-field level, Eq. (11)
gives rise to some non-universal behavior for any d. We have, for example,
seen that critical exponents change with the sign of the parameter a.

IV. BEYOND THE MEAN FIELD APPROXIMATION

In the previous section we found that mean-field theory produces
novel, non-trivial phase diagrams with critical points and properties that
can depend on <x and on the kind of initial conditions applied. We now
explore whether this phase structure and non-universality persist beyond
the mean-field approximation, when fluctuations are included.

Numerical simulations are the main tool we have used in this
endeavor. There are two different numerical strategies one could follow.
The first is to simulate Eq. (11) directly.(43, 44) The disadvantage of this
route is that simulating a field theory is difficult, and obtaining asymptotic
critical behavior from it is computationally expensive(43) This strategy will
thus be relegated to a separate publication.(44) Here we choose the second
alternative, defining a discrete, microscopic model, which can be argued to
belong to the universality class of Eq. (11), and which is much simpler
to study numerically. The discrete model we treat is called "the non-
Markovian contact process," and is introduced in the next section.

A. The Non-Markovian Contact Process: Definition

Let us first define the standard contact process (CP) in its discrete
time version.(7, 3, 45) At every point, i, of a d-dimensional square lattice an
occupation variable n(i) which can take the values 0 or 1, is defined, n = 0
and n = 1 respectively describing sites that are empty and occupied by a
particle. At each time step, a particle can either create a new particle on a
neighboring empty site with probability p, or disappear with complemen-
tary probability 1 - p. Each newly created particle appears with equal
probability at any of the nearest neighbors of the original particle. If the
randomly chosen site is already occupied, the creation process is rejected.
As particles cannot be generated spontaneously, it is clear that the empty
lattice is an absorbing state of the model.

The non-Markovian contact process (NMCP), is a simple modifica-
tion of the CP, in which p is replaced at any point i and at every discrete
time step t by a history-dependent probability:
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where At is the discrete time increment. It is not difficult to argue that this
model belongs to the universality class of Eq, (11) . Using the same type of
arguments employed to show that the CP is in the RFT universality class,(25)

it is straightforward to conclude that the NMCP is in the universality class
of a RFT-like theory with effective history-dependent parameters. Except
for the mass-term, all the parameters in the ordinary RFT are marginally
relevant by naive power counting at the critical dimension. Because the
history-dependent corrections to these parameters are less relevant (since
they involve higher powers of the field), only the history-dependent correc-
tion to the effective mass term, r(x, t) = r0 + aexp[ — w1 j dt n(x, t ) ] , is
potentially important for critical behavior. The Langevin equation that
results from these arguments is then just RFT supplemented by the non-
local mass term, viz., precisely Eq. (11) . This implies that the NMCP is in
the same universality class as Eq. (11) , and hence also in that of systems
with INAS. Note that p0 and a must be chosen to satisfy 0 < p0 < 1 and
0p0 + a < 1, in order for p(i, t) in Eq. (16) to be a true probability.

B. Numerical Procedure

In this section we report results of Monte Carlo simulations of the
NMCP that start from seed initial conditions. We consider a d-dimensional
lattice of variable size Ld, and implement the evolutionary rules as defined
above. The algorithm is much more efficient if sites for attempted updates
are chosen from a list of occupied sites.(9, 3) Sequential updating is used. As
is usual in this type of simulation, with each discrete time step the time
variable is incremented by At= 1 / N ( t ) , where N(t) is the total number of
particles. The initial condition consists of an isolated particle at the origin
in an otherwise empty lattice. The number of independent runs used for a
given set of parameters varies, but can be as large as 106. Most of the runs
die for long enough times, of course. In the simulations, we measure the
standard quantities, N(t), P(t) and R2(t), as well as the decay of the density
around the origin. To compute the critical exponents associated with these
quantities, we plot their logarithmic derivatives as functions of 1/t. The
intersections of these curves with 1/t = 0 give the asymptotic values of the
slopes, and therefore the critical exponents.

C. Numerical Results: One Dimension

We start with the 1D case.

1. a = 0 Case. This corresponds to the standard CP, which is
known to be in the DP universality class. As the exponents are known with
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high precision, this case serves as a test of our algorithm. Using the
criterion of power law behavior at criticality, we determine the critical
point, and obtain px 0.7673(2) which is in excellent agreement with the
previously known result.(3) For the critical exponents we get n = 0.31,
d = 0.15 and z = 1.23, also in very good agreement with the accepted results
for DP.(3) We also determined the bulk critical exponent 9, characterizing
the decay of a homogeneous initial condition to the absorbing state at the
critical point. Our best estimate was 0 = 0.16, to be compared with the
known result 0 = 0.159 for DP. (Note that in the DP universality class, the
exponents 0 and 8 are equal.)

2. a ^ 0 Case. In this case the critical point is not shifted with
respect to the a = 0 case, in contrast with the mean-field predictions but in
agreement with numerical results for 1D models with INAS.(35, 40) The
dynamical exponent z and the sum q + S are found to be universal, taking
values compatible with DP within the accuracy limits (see Table I).
However, the exponents n and d individually are not universal, depending
continuously on a (see Figs. 6, 7, and 8, and Table I). Since < x = < w 2 ( r 1 /
H>[ — n 1 ( x , r = 0))>, negative values of a correspond to an excess of isolated
particles with respect to the natural density in microscopic models with
INAS. In this case, these microscopic models exhibit scaling with exponents
S > S D P , and n <nDP,(37, 39) which is precisely what we find in our simula-
tions when <x<0 (see Figs. 6, 7, and 8, and Table I). On the other hand,
for positive a, 8<6DP and n>nDP, also in agreement with the results for
microscopic models with INAS.

In order to verify whether the hyperscaling relation, Eq. (7), derived
for systems with INAS, is satisfied(37, 39) we also measured 6. For all values
of a we studied, the result for 0 was very close to the known DP value
(as expected for 6, which is a bulk exponent). Note that this implies d¥=6,
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Table 1. Numerical Values of the Critical Exponents for the
1D NMCP, for Different Values of a"

a

-10.0
-0.5

0.0
0.15
0.5

1

0.02
0.24
0.31
0.33
0.36

<5

0.45
0.22
0.16
0.14
0.11

n + 8

0.47

0.46

0.47

0.47

0.47

2

1.26

1.27

1.27

1.27

1.26

0

0.16

0.155
0.16

0.155
0.16

aThe uncertainty in all cases is +0.01; a = 0 corresponds to DP.
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Fig. 6, Log-log plot of the time evolution of N(t) at criticality, for different values of a in
the ID NMCP. From top to bottom: a = 0.5, a = 0.15, a = 0.0, a =-0.5, a=-10.0, and
a= —50.0. The critical exponent changes continuously with a.

Fig. 7. Log-log plot of the time evolution of P(t) at criticality, for different values of a in the
ID NMCP. From top to bottom: a = 0.5, a = 0.15, a = 0.0, a =-0.5, a=-10.0, and
a= —50.0. The critical exponent changes continuously with a.
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contrary to what happens in DP. The scaling relation (7) was satisfied with
good accuracy in all of our trials.

A possible explanation of the non-universality is that the measured
exponent values are not the true asymptotic ones, but have yet to converge
to their asymptotic DP values. To explore this possibility we ran some very
large simulations (up to times t = 250000), with different values of the
parameters a and w1. (Note that w1, controls how fast the argument of the
exponential term vanishes, so increasing it should make the exponential
term vanish more rapidly at any occupied point, and hence promote the
crossover to DP values.) Nonetheless, we found no hint of a crossover to
DP exponents in any of our trials.

In summary, the Langevin Eq. ( 1 1 ) appears to reproduce very well all the
phenomenology of microscopic 1D models with INAS. The complex phase
structure observed in the mean-field approximation is destroyed by the fluctua-
tions, and only one critical point remains. There is apparently some non-
universal behavior, for which no satisfactory explanation exists at present.

D. Numerical Results: Two Dimensions

In two dimensions we expect the effect of fluctuations to be less
pronounced than in d= 1. The mean-field phase structure is therefore more
likely to be preserved.

Fig. 8. Log-log plot of the time evolution of R2(t) at criticality, for different values ol" a in
the ID NMCP. From top to bottom: a = 0.5, <x = 0.15, a = 0.0, a =-0.5, a=-10.0, and
<x= -50.0. The slope tor large times is the same for all the curves.



1. a = 0 Case. Again the case <x = 0 constitutes a good test of the
algorithm. The critical point is found to be located at p x 0.622, in good
agreement with the known value.(3) The associated critical exponents are
also in fairly good agreement with the expected DP values, given that we did
not perform very extensive simulations to try to obtain extremely precise
values. In particular, we get n % 0.205, 6 = 0.46, and z = 1.13, to be compared
with the known results: n = 0.214(2), 6 = 0.460(6), and : = 1.134(4). (3 )

2. a>0 Case. In accord with our mean-field predictions, the criti-
cal point for spreading, ps(a), is found both to be shifted downward with
respect to the a = 0 critical point, p,(oi. = 0), and to depend on a. The criti-
cal point for bulk properties is, however, found to coincide with that of the
a = 0 case, viz., p = 0.622. We have studied in detail the case a = 0.2, for
which we get ps(a.) % 0.597, using the usual criterion that the critical point
be characterized by power-law behavior.

At criticality, we measure the following exponent values: n = 0.7,
SK, 0.08, and z = 1.78 (see Fig. 9). These values agree, to within our preci-
sion of roughly 10%, with the values for dynamical percolation in 2D, for
which the best estimates we are aware of are: n = 0.6, S = 0.08 and z = 1.76.
(See refs. 15 and 46 and also ref. 39 for the relation between the exponents
defined and measured in ref. 15 and the ones we study here.) In Fig. 10 we
show the evolution of the averaged particle density <n(.x, y = 0)> as a func-
tion of the distance x to the initial seed. A similar structure to that pre-
dicted in mean field is observed, namely, the initial bump splits into two
pieces, which separate from each other in time. (In fact, of course, there is
an expanding ring, which leaves behind it an empty circular region. Only
a ID cut of this ring is shown in the figure.) At the bulk critical point, we
measure 0 % 0.46 which coincides with the DP value. Therefore, we have
fairly clear evidence that the dynamical percolation behavior for spreading
predicted by mean-field theory survives fluctuations, that the bulk proper-
ties are DP-like, and the mean field phase structure (Fig. 3) is qualitatively
valid.

3. a < 0 Case. The critical point for bulk properties is at p % 0.622,
and, as in the previous cases, 0 % 0.46, indicating that these properties are
DP-like, and do not depend on at.

The critical value, ps(oc), for spreading seems to be very slightly larger
than ps(0). In particular, for a= —0.1 we get ps(a.) ^ 0.625. The critical
exponents r;, S, tj + d, and z (Fig. 11) all appear to vary continuously with
the parameters of the model, such as a and v r , . This is consistent with the
behavior reported in ref. 40, and represents even more severe nonuniver-
sality than occurs in ID, where z and q + S assume universal, DP values.
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Fig. 9. Log-log plots of (from top to bottom) R 2 ( t ) , N(t), and P(t) for the 2D NMCP, at
the critical point, for a = 0.2. The dotted lines correspond to the asymptotic behaviors for the
dynamical percolation universality class.

Fig. 10. The averaged particle density <«(.v, y = 0)> averaged over 10000 runs, in the case
<x>0 , at the critical point of the 2D NMCP. The initial condition (solid line), and the profile
at ( = 300 (dotted line), are represented. The initial bump splits in two with increasing time.
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Fig. 11. Log-log plots of (from top to bottom) R 2 ( t ) , N(t)/P(t), N(i)IP(t) R 2 ( t ) , and P(t),
respectively corresponding to the exponents z, n + rf, / / + < 5 — :, and — <$, at the critical point
of the 2D NMCP. The four curves in the data set for each quanti ty correspond to, from top
to bottom: (w1, a) = (100.0, -O.I) , (1.0, -0.05), (1.0, -0.1), (1.0, -0.2).

where the bulk exponent 0 assumes its DP value1421 of roughly 0.46. Note
that the data of ref. 40 apparently do not obey this scaling law. Since the
scaling law seems rather fundamental (e.g., ref. 39), we are inclined to
attribute this to the difficulties of achieving the asymptotic limit for critical
behavior in 2D simulations. Figure 11 makes clear, for example, that our
log-log data for the survival probability governing the exponent S are quite
curved, implying that the asymptotic limit has not yet been reached. The
data for n + S — z, by contrast, are very linear. It is of course possible that
the observed nonuniversality and the apparent difficulties in reaching the
asymptotic regime are connected with the proximity of the CDP fixed point
discussed in section III in the context of mean-field theory. Clearly more
extensive simulations will be required to resolve these difficult issues.
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sal, consistent with the scaling relation (37, 35, 39)
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Fig. 12. One-dimensional cut of the particle density at x= —0.1, averaged over 10000 runs,
in the case a<0 at the critical point of the 2D NMCP. The initial condition (solid), and the
profile at t = 300 (dotted), are represented.

In Fig. 12 we show the particle density, (n(x, y = 0)>, for a = —0.1,
averaged over all trials, as a function of the distance x to the origin, for two
different times. There is a very slow spreading, and the integral over the
curves decreases slowly in time, corresponding to n ~ —0.1.

4. Two-Dimensional Systems With INAS Revisited. With
the results of the mean-field analysis and the numerics in mind, we now
reassess the conclusions drawn in ref. 40, where critical spreading in two
dimensions for systems with INAS was first studied numerically. We
propose that the apparent non-universality observed in ref. 40 is in fact a
consequence of the 2D NMCP having three different possible critical
behaviors, corresponding to DP, dynamical percolation, and the non-
universal regime discussed in the previous subsection. Which one of these
is observed in any given case depends on the quantity measured and on the
parameter values. In particular, for the case of an initial density smaller
than the natural one (e.g., o = 0.2 in the notation of ref. 40, corresponding
to a>0 in ours), there is a shift in the critical point for spreading consis-
tent with the one predicted by mean-field theory and observed to occur in
the 2D NMCP with a > 0. The spreading exponents measured in ref. 40 for
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this case are n = 0.64, (5 = 0.078, and z=1.84, in reasonably good agree-
ment with the 2D dynamical percolation values, (0.60, 0.08, and 1.76,
respectively), suggested by our analysis. The qualitative picture of an
expanding ring of activity described in ref. 40 is also consistent with the
phase transition being in the dynamical percolation universality class. The
bulk exponents measured in that reference are DP-like, as expected from
our analysis and the field theoretical arguments presented in ref. 36.

On the other hand, in the case where the density of the initial absorbing
environment exceeds the natural value (e.g., ^ = 0.5 in the notation of
ref. 40, corresponding to a < 0), the observed nonuniversality is qualitatively
consistent with our measurements on the NMCP. The main difference is
that the scaling law n + S — dz/2 = — 0, satisfied by the NMCP, is apparently
violated in ref. 40. We attribute this to the fact that, as noted in ref. 40, the
measured values of the exponents in that work are not the true asymptotic
ones.

V. CONCLUSIONS

We now summarize the implications of our analytic and numerical
results on the non-Markovian contact process and systems with infinite
numbers of absorbing states:

• In both one and two dimensions, the critical properties of bulk
quantities measured in simulations with spatially homogeneous initial con-
ditions are universal, and belong in the directed percolation universality
class, as predicted in ref. 36.

• In two dimensions, the phase structure for spreading properties
depends importantly on the sign of a. For a > 0, critical spreading in the
NMCP occurs at a value of the parameter p smaller than the bulk critical
value, and critical spreading exponents fall in the dynamical percolation
universality class. For a < 0, the critical value of p for spreading seems to
be very slightly above the bulk critical value. Spreading exponents are
apparently nonuniversal, but the scaling law n + S — dz/2= —9 is satisfied,
with 0 assuming its universal, DP value.

• In one dimension, there is a unique critical point at which both bulk
and spreading behaviors become singular. All critical spreading properties
associated with quantities averaged only over surviving runs are universal
and DP-like, but those defined by averaging over all runs, and hence
involving the survival probability, appear to be nonuniversal. Unlike in the
2D case, the exponents z and n + S assume universal DP values in 1D.
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• The nonuniversality observed in both 1D and 2D for < x < 0 is not
predicted by mean-field theory, indicating that fluctuation effects are rather
severe. As yet there is no satisfactory explanation for this nonuniversality
in either field theoretical arguments or series expansions.
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NOTE ADDED IN PROOF

After completing this work, we became aware of a paper by P.
Grassberger, H. Chate, and H. Rosseau [Phys. Rev. E 55, 2488 (1997)]
—GCR hereafter—where the similar problem of spreading in media with
long-time memory is studied. Some of the conclusions in that paper corre-
spond to ours here. The main differences are, firstly, that GCR argue rather
convincingly that the critical point for spreading in what amounts to our
a < 0 case is identical to the bulk critical point. Our 2D data, which show
only a very slight shift in pc with a, are compatible with this conclusion.
Secondly, OCR's numerical data in 2D do not satisfy the scaling law
n + 6 — dz/2 = —0, presumably because they have not achieved the asymp-
totic limit. Indeed, they show considerable curvature.
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